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A computationally efficient, implicit approach to the simulation of  linear sweep and cyclic voltammetry 
at the channel electrode is derived. The results of  computat ions for a simple reversible electron transfer 
are presented. First the scan rate requirements for the recording of  effective steady state vol- 
tammograms are established. Secondly the effect of  scan rate upon waveshape and potential shift is 
described for flow and no flow regimes at the channel electrode. The results are found to be in good 
agreement with analytical theory where applicable. The ready extension of the method to mechan- 
istically complex schemes is emphasised. 

1. Introduction 

Channel electrodes are becoming popular well-charac- 
terized hydrodynamic electrodes for a wide range of 
analytical and homogeneous/heterogeneous mech- 
anistic investigations [1]. The main attributes of these 
cells include the wide range over which mass transport 
can be varied, operation under chemostatic conditions 
and the mechanistically discriminating power con- 
ferred by the non-uniformity of the diffusion layer 
over the electrode surface [2]. 

The purpose of this paper is to provide an efficient 
implicit computational strategy for the calculation of 
the current response at a channel electrode, under 
potential sweep conditions. The method is exemplified 
with reference to a simple reversible electrode reaction, 
free of kinetic complications, but is easily modified 
to allow the description of mechanistically complex 
systems. 

Some approximate analytical theory for linear 
sweep and cyclic voltammetry at the channel electrode 
has been derived previously. First, we have presented 
[3] a theory, valid under conditions where the L6v6que 
approximation [4] is applicable, showing how the 
wave-shape and halfwave potential vary with elec- 
trode geometry and voltage sweep rate in the limit of 
slow scan rates. Secondly Singh and Dutt [5-8] have 
given theory for linear sweep and cyclic voltammetry 
valid for the full range of interfacial kinetics (reversible, 
irreversible, quasi-reversible) but their derivations 
were based on a mathematical simplification in which 
the concentration gradients in the direction of flow 
were replaced by their average values. Finally Aoki [9] 
treated the problem of reversible electron transfer 
without making assumptions as to the magnitude of 
the voltage scan rate but again within the L6v6que 
approximation. However his mathematical treatment 
is not readily extendable to other mechanistically 
interesting situations. This restriction is eliminated by 
the numerical strategy presented here which addition- 
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ally makes no assumptions as to the validity of the 
L6vaque approximation and is thus valid for electrodes 
of general geometry and for those flow rates in which 
the diffusion layer is not confined to being very close 
to the electrode surface i.e. conditions under which the 
cell approaches thin-layer characteristics. In all cases 
the results from our numerical simulations are shown 
to be in good agreement - under the appropriate 
conditions - with existing theory. 

2. Theory 

We consider a simple reversible one electron transfer 
reduction carried out at a channel electrode at which 
the potential is swept at a scan rate vVs -1 from a 
value at which no current flows to one corresponding 
to the transport-limited reduction of a species, A: 

A + e - ,  " B  

The general convective-diffusion equation describing 
the distribution of A in time (t) and space is 

c0[A] cO2[A] 0[A] 
cOt - O CO~--- vx ~?x (1) 

where D is the diffision coefficient of A, the Cartesian- 
coordinates x and y are as defined in Fig. 1 and v,. is 
the solution velocity in the x-direction. The velocity 
components in the y- and z-directions are both zero. If 
a sufficiently long lead in length exists [10], then the 
velocity takes the form: 

where h is the half-height of the cell (Fig. 1), 
y' = h - y and v0 is the velocity of flow at the centre 
of the channel. 

We assume the electrode potential E, is swept linearly 
with time at a rate v, through the reduction wave of A, 
starting from an initial potential E~: 

E, : E i - v t  
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Fig. 1. A schematic diagram of a channel electrode which defines 
the coordinate system used. 

The relevant boundary conditions for reversible 
electron transfer are: 

= O, y > ~ O ,  O<X<s 

[A] = [Albulk, [B] = 0 (3) 

8[A] c?[B] 
r > O, y = O, 0 < x < xo, 8y - 

all z, y 

8y 

(4) 

r > 0 ,  y = O, O < x < 7 .  X e ,  

[A] 
- 0 exp ( - - a t )  (5) 

[BI 

a[A] 8[B] 
= 2 h ,  0 < x < Xe, C~y c~y - 0 

(6) 

where x~ is the electrode length, [ A ] b u l  k is the bulk 
concentration of  A, 

0= 1 
( 9 U 2 D )  '13 

+ = \xe~h ~ )  t (8) 

( x2eh 2 ~1/3 

a = (Fv) t ~ J  (9) 

E ~ is the standard electrode potential of the A/B 
couple and U is the mean solution flow rate (cm s-i ). 
In writing Equation 4 we have assumed A and B to 
have identical diffusion coefficients�9 The form of  the 
parameters r and a is suggested by the theoretical 
treatments valid for the L6v6que conditions [3, 9] 
which show that then the current-voltage curve is 
solely a function of o-. 

Solution of Equations 1-6 may be achieved by the 
use of  a two-dimensional finite difference grid which 
covers the x - y  plane, as shown in Fig. 2. Spacings in 
the two directions are Ax and Ay, respectively, so that 

A x  Xe 

K 

2h ky  - 
J 

We may then define concentrations at a point (j,  k) 
corresponding to x = k A x ,  y = j A y .  We use the 
symbol aj.k to denote the concentration of A at this 
point�9 

Equations 1 and 2 may be then cast into finite- 
difference form if we define the parameters 

6 VrAy A t j  (2h - j Ay) 
2~ = aC2h)3kx (10) 

and 

D A t  
2' - ( l i )  

(Ay) 2 

where V r ( = 4 % d h / 3  = 2 U h d )  is the volume flow 
rate�9 At represents an increment of time. We use the 
notation taj,, to indicate the concentration of A at time 
tAt. Equation 1 then becomes 

'+Iaj.k -- 'a:.k _ D 

At (ay) 2 

St+l H 2,+1_ t + l  2. X t j - I , k  - -  uj, k Jr- a j + l . k j  {+ +a} L k -  
- v+ a:,~ X x  (12)  

Or, rearranging 
] c f t + l  "( }) yt+l a "t 

raj ,  k + "~ i t  @,k i j  = - -  + t j - - i , kS  

+ (2,;t-" + .~j+ 1){'+'a,..<<} - .~vs,+'a "t /+l,k} (13) 

Application of  the boundary condition (5) gives 

2;0 exp ( - a ( t  + 1)Az) 
t c. S t + l  a 
aw< + )+~t ~,k ~} + 1. + 0 e x p ( - a ( t  + I)AQ 

= (22-"+ 2<2+ 1){'+'a,,k} - )~Y{t+ la2, / .  } (14) 

while the boundary condition (6) results in 
t a ,7.<. o+t ~)'P+ta 

J - l , k  -i- ~a_,~. a j _ l , k _ l }  = - -  " I. J 2.k} 

~c , + t  + ( Y + z ,  , + i ) {  ~ ,+~} d5)  

Systems of equations of the form of those in Equations 
13-15 may be expressed in the form of a (J - 1) • 
( J -  1) tridiagonal matrix as described in [11]. 
Specifically 

{d} = [T]{u} (16) 

where 

-b~ cl  0 

a 2  b2 C2 O 

= o ,,j b~ 

d l  

I 
4 i  

�9 I 
�9 I 

da_2 

- 4 - 1 J  

q 0 

aa  2 b j  2 

0 a a _  1 

The matrix elements are given by: 

k = l ,  

Cj 2 

ba  __ l - 

dl t = al�9 + 22 + 

Ul 

/'/2 
o 

uj 

IAj 2 

_tAd_ I 

)Y0 exp ( -c r ( t  + l)Ar) 

(1. + 0 exp ( - a ( t  + l)Az) 

(17) 
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Fig. 2. The finite difference grid used as the basis for the numerical calculations. 

chanr 

~etectrode 

4 = taj, 1 ~- ~J' j = 2, 3 . . .  J -- 1 (18) 

k > l  

4 

d, = {ta~,k} + ~r 

2YO exp (--cr(t + 1)At) 
+ (19) 

(1. + 0 exp ( - a ( t  + 1)Ar) 

{'aj,~} + 2}{'+~ai, k_,} j : 2, 3 . . .  J - 1 

(2o) 

22 -~' + 2~ + 1 j = 1 , 2 . . . J -  2 (21) 

uj = t+laj ,  k j = 1, 2 . . .  J - -  1 (22) 

cj = - 2  y j = 1 , 2 . . . J -  1 (23) 

aj = - - ) f  j = 1, 2 . . .  J -- 1 (24) 

b j _ l .  k = J~Y + 2~) 1 + 1 (25) 

Note that the matrix Equation 16 shows how the 
concentrations throughout the cell at time (t + 1)At 
may be calculated if we know those at time t a t .  To do 
this we have to find the set of  vectors {u}: for each k 
value has its own vector {u}~. The matrix [T] being 
of tridiagonal form allows us to use the Thomas  
algorithm [11] to give {u}~ from {d}k. The boundary 
condition 3 supplies the vector {d}0 from which {u}0 is 
calculated. Then {d}~+~ = {u}k, so {u}L is calculated 
from {d}l, and so on until {u}, is obtained. The 
calculation is then repeated. 

In this way the concentration profile of  A within the 
flow cell may be calculated as a function of time. The 
current at the electrode may thus be evaluated at any 
instant from 

' I  = w F D a ~  ~=l (tal,k -- tao,k) ~fiy (26) 

Using the theory outlined above linear sweep 
voltammetric transients were computed (on a Sun IPC 
Sparc work station) and convergence examined by 
varying aT, K a n d  At values. The simulations employed 
the following general parameters,  unless specified as 
different in the text below, 2h = 0.04cm, d = 0.6cm, 
Xe = 0.4cm, w = 0.4cm and for a diffusion coef- 
ficient o f D  = 1 x 10 5cm 2s a. To achieve conver- 

gence values of K = 200 and J = 200 were required 
to give convergence to 3 significant figures. Values of 
At in the range 0.05-0.002 s gave identical results for 
scan rates in the range 0.5 > v > 0.00005Vs -~. 

The theory is simply extended for the case of  cyclic 
hydrodynamic voltammetry,  that is where the scan is 
reversed so as to 'see' the reconversion of B to A. In 
this case the simulation is exactly the same as the 
approach above on the forward scan. However for 
computat ion of the reverse sweep the electrode poten- 
tial is given by 

E, = EF + v ( t  -- t* )  

where EF is the potential at which the forward scan is 
reversed at time t*. 

3. R e s u l t s  a n d  d i s c u s s i o n  

Preliminary computat ions were undertaken to test the 
predictions of  the new approach at infinitesimally 
slow scan rates against the behaviour computed 
directly for steady state conditions from the appro- 
priate boundary conditions [11]. Figure 3 shows the 
current (normalized to the steady state limiting cur- 
rent) response of a steady state calculation using a 
flow rate Vf of  1 x 10 -2 cm3s 1 for the electrode 
geometry specified above, together with that predicted 
for a scan rate of  0.0005 V s-~ using the new approach. 
As can be seen excellent agreement is observed sup- 
porting our general computat ional  approach. In 
addition analytical theory predicts that, under con- 
ditions where the L~v6que approximation holds, the 
current voltage response should be a unique function 
of the parameter  o- [3, 9]. This prediction was verified 
by varying the scan rate and flow rate over wide 
ranges. The results of  this are exemplified by Fig. 4 
which shows two superimposed normalized current/ 
voltage plots both calculated for a fixed value of 
a = 0.62 and generated by varying scan rate from 0.1 
to 0.01 V s-~ and altering the flow rate appropriately 
(Equation 9). Excellent consistency is observed - the 
curves agree to better than _+ 1% over the whole range 
- indicating, again, that our computat ions are in 
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Fig. 3. Current-voltage curves calculated for the electrode of geometry 
specified in the text with a solution flow rate of  10 2 cm 3 s - i .  The 
solid line shows the behaviour calculated for true steady state 
conditions [1 I] and the dotted line that for a scan rate of  0.0005 Vs l 
using the new computat ional  approach. N~a- describes the current 
normalized to the steady state limiting current. 

good limiting agreement with analytical theory. As 
a final preliminary check attention was focused on 
the predicted cyclic voltammetric behaviour under 
conditions of  no flow in the cell geometry given 
above. The variation of  peak height with scan rate 
was analysed and showed the expected square root 
behaviour and peak-to-peak separation of conven- 
tional, unbounded cyclic vol tammetry [9]. The validity 
of  the general numerical approach was thus estab- 
lished as verified. 

We next employ the simulation method in a new 
range of essentially unexplored channel electrode prob- 
lems. The first effect investigated was the apparent  
shift in potential of the current-voltage curve with 
scan rate. As the scan rate is increased slow diffusion 
in solution causes the concentration profile of  A 
to 'lag behind' its true steady state distribution so 
that a peak appears in the current-voltage curve. At 
the same time the wave becomes shifted from that 
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Fig. 5. The variation of the normalized current-voltage waveshape 
with different scan rates for the electrode geometry and electrolyte 
flow rate as specified in the text. The scan rates used were 0.5, 0.2, 
0.06, 0.03 and 0.005Vs -1. The faster the scan rate, the more 
pronounced is the current maximum.  A curve calculated for a scan 
rate of  0.0005 V s ~ was indistinguishable when plotted from that 
shown in the figure for 0.005 V s- l .  

observed under scan rates sufficiently slow so as to 
allow a true steady state to be established. Figure 5 
shows a typical plot of the waveshape and potential 
shift for a flow rate of  5.211 x l0 -x cm 3 s -I. The 
appropriate scan rates are defined in the figure legend. 
The wave is seen to shift anodically with scan rate 
and the potential shift was found to be in good quan- 
titative agreement with that predicted from analytical 
theory [3]. 

Next simulations were performed for cyclic voltam- 
merry and the effect of  shrinking the channel height to 
approach thin-layer cell conditions examined via the 
shape of the vol tammograms predicted. For these 
simulations a value of 2h = 0,0005 cm and scan rate 
of  0.005 V s ~ were employed; otherwise the cell par- 
ameters were as defined above. The results obtained 
are presented in Fig. 6, Curve (a) was obtained under 
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Fig. 4. Current-vol tages curves computed for the electrode of  
L6v~que geometry (specified in the text) for differing voltage scan 
rates and solution flow rates such that the parameter  c~ is fixed at the 
value 0.62. 
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Fig. 6. Current-vol tage curves generated for a thin layer channel 
electrode cell (see text) for flow rates of  Vf = (a) 0; (b) 10 -~; (c) 10 -5 
and (d) 2 x 10 -s cm 3 s-~. The higher the flow rate the greater the 
steady-state limiting reduction current. 
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Fig. 7. Current-voltage curves showing the influence of  scan rate on 
the waveshape measured at a channel electrode of  the dimensions 
given in the text and for a solution flow rate of  5 x 10 4 cm 3 s i. 
The three curves relate to voltage scan rates of  0.000 05, 0.0005 and 
0.005 Vs 1. 

conditions of no flow and the resulting current- 
voltage peak is symmetrical, as expected. With the 
introduction of flow (Fig. 6b-d) the forward and 
reverse peaks become asymmetric and the reverse 
peak current reduced in intensity, approaching the 
behaviour expected for ordinary flow rates and 
geometries. 

Attention was then returned to conventional cell 
geometries, and the criteria for the experimental 
measurement of steady state voltammograms estab- 
lished. A wide range of flow rates and scan rates was 
investigated. Figure 7 presents typical current-voltage 
curves calculated from the simulations. At slow scan 
rates the maximum current observed in the simu- 
lations is that of the normal transport limiting current. 
However as one scans progressively faster a peak 
appears in the current (Fig. 7) and ultimately, at rela- 
tively fast scan rates, this peak current tends to 
the behaviour of a purely diffusional regime. This 
is best illustrated by a plot of log(peak current) 
against log (scan rate) as depicted in Fig. 8 for a series 
of flow rates. It can be seen that at fast scan rates a 
slope of 1/2 is observed corresponding to the purely 
diffusional limit, whereas at slow scan rates the peak 
current is scan rate independent. Plots such as Fig. 8 
are important in that they define the range of scan 
rates permissible to the experimentalist for given 
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Fig. 8. A working curve summarizing the results of  calculations 
such as presented in Fig. 7 showing the transition between pure 
steady-state hydrodynamic and pure diffusional behaviour for a 
s e r i e s  o f  f l o w  rates (Vf/cm 3 S -  I ) .  

electrode parameters so that authentic steady state 
current-voltage curves may be obtained, for example 
for Tafel, or other, analysis. 

In conclusion, we have developed a general efficient 
and simple computational approach for the solution 
of the time dependent problems at the channel elec- 
trode. This should make this highly advantageous 
electrode design accessible for a much wider range of 
applications. 
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